Approximations for Steiner Trees with Minimum Number of Steiner Points
نویسندگان
چکیده
Given n terminals in the Euclidean plane and a positive constant, find a Steiner tree interconnecting all terminals with the minimum number of Steiner points such that the Euclidean length of each edge is no more than the given positive constant. This problem is NP-hard with applications in VLSI design, WDM optical networks and wireless communications. In this paper, we show that (a) the Steiner ratio is 1 /4, that is, the minimum spanning tree yields a polynomial-time approximation with performance ratio exactly 4, (b) there exists a polynomialtime approximation with performance ratio 3, and (c) there exists a polynomial-time approximation scheme under certain conditions.
منابع مشابه
Approximating Minimum Steiner Point Trees in Minkowski
Given a set of points, we define a minimum Steiner point tree to be a tree interconnecting these points and possibly some additional points such that the length of every edge is at most 1 and the number of additional points is minimized. We propose using Steiner minimal trees to approximate minimum Steiner point trees. It is shown that in arbitrary metric spaces this gives a performance differe...
متن کاملApproximating minimum Steiner point trees in Minkowski planes
Given a set of points, we define a minimum Steiner point tree to be a tree interconnecting these points and possibly some additional points such that the length of every edge is at most 1 and the number of additional points is minimized. We propose using Steiner minimal trees to approximate minimum Steiner point trees. It is shown that in arbitrary metric spaces this gives a performance differe...
متن کاملA note on the MST heuristic for bounded edge-length Steiner trees with minimum number of Steiner points
We give a tight analysis of the MST heuristic recently introduced by G.-H. Lin and G. Xue for approximating the Steiner tree with minimum number of Steiner points and bounded edge-lengths. The approximation factor of the heuristic is shown to be one less than the MST number of the underlying space, de ned as the maximum possible degree of a minimum-degree MST spanning points from the space. In ...
متن کاملThe k-Steiner Ratio in the Rectilinear Plane
Ž . A Steiner minimum tree SMT in the rectilinear plane is the shortest length tree interconnecting a set of points, called the regular points, possibly using Ž . additional vertices. A k-size Steiner minimum tree kSMT is one that can be split into components where all regular points are leaves and all components have at most k leaves. The k-Steiner ratio in the rectilinear plane, r , is the in...
متن کاملMinimum Steiner Trees in Normed Planes
A minimum Steiner tree for a given set X of points is a network interconnecting the points of X having minimum possible total length. In this note we investigate various properties of minimum Steiner trees in normed planes, i.e., where the "unit disk" is an arbitrary compact convex centrally symmetric domain D having nonempty interior. We show that if the boundary of D is strictly convex and di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 262 شماره
صفحات -
تاریخ انتشار 2000